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Abstract

Black carbon (BC) particles accumulated in the Arctic troposphere and deposited over
snow have significant effects on radiative forcing of the Arctic regional climate. Applying
cluster analysis technique on 10-day backward trajectories, transport pathways affect-
ing Alert (82.5° N, 62.5° W), Nunavut in Canada are identified in this work, along with
the associated transport frequency. Based on the atmospheric transport frequency
and the estimated BC emission intensity from surrounding regions, a linear regression
model is constructed to investigate the inter-annual variations of BC observed at Alert
in January and April, representative of winter and spring respectively, between 1990
and 2005. Strong correlations are found between BC concentrations predicted with the
regression model and measured at Alert for both seasons (F»’2 equals 0.77 and 0.81
for winter and spring, respectively). Results imply that atmospheric transport and BC
emission are the major contributors to the inter-annual variations in BC concentrations
observed at Alert in the cold seasons for the 16-year period. Based on the regression
model the relative contributions of regional BC emissions affecting Alert are attributed
to the Eurasian sector, composed of the European Union and the former USSR, and
the North American sector. Considering both seasons, the model suggests that Eura-
sia is the major contributor to the near-surface BC levels at the Canadian High Arctic
site with an average contribution of over 85% during the 16-year period. In winter, the
atmospheric transport of BC aerosols from Eurasia is found to be even more predomi-
nant with a multi-year average of 94%. The model estimates smaller contribution from
the Eurasian sector in spring (70%) than that in winter. It is also found that the change
in Eurasian contributions depends mainly on the reduction of emission intensity, while
the changes in both emission and atmospheric transport contributed to the inter-annual
variation of North American contributions.
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1 Introduction

Black carbon (BC) particles accumulated in the Arctic troposphere and deposited onto
snow have significant effects on radiative forcing of the Arctic regional and the global
climate (Flanner et al., 2007; Hansen and Nazarenko, 2004; Jacobson, 2001; Kristjans-
son et al., 2005). Absorbing both the direct and the reflected solar radiation, BC in the
atmosphere was suggested to be the second strongest contributor to current global
warming, after carbon dioxide (Chung et al., 2005; Ramanathan and Carmichael,
2008). Once deposited onto snow and sea ice, BC changes the surface albedo and
contributes to melting of Arctic sea ice (Clarke and Noone, 1985; Flanner et al., 2007;
Jacobson, 2004; Kim et al., 2005; Koch and Hansen, 2005). BC particles (along with
sulphate and organic carbon) intensively accumulate in the Arctic troposphere during
the winter and early spring, as a result of the Arctic haze phenomenon (Barrie, 1986;
Law and Stohl, 2007; Quinn et al., 2007; Shaw, 1995). The anthropogenic emissions
from Europe and former USSR were suggested to be the major sources of the Arctic
haze in general (Quinn et al., 2007; Shindell et al., 2008; Stohl, 2006), but the relative
importance of the potential source regions may have different impacts on two different
sites in the Arctic (Sharma et al., 2006). Worthy et al. (1994), for instance, showed that
rapid air mass transport from western Russia in winter was responsible for the highest
concentrations of BC measured at Alert.

Based on 13-year continuous observations at Alert (82.5°N, 62.5° W), Nunavut,
Canada since 1989, a broad peak in BC concentration was previously found from Jan-
uary to April (Sharma et al., 2006), corresponding to the haze season. Recently, a
marked monotonic decreasing trend of BC concentration at Alert between 1989 and
2002 was revealed using a geometric time variation model (Sharma et al., 2004). The
impact of emission variation was highlighted in their study as the decreasing trend in
BC concentrations was associated to the reduction of BC emissions from the former
USSR sector, rather than the North American and the European sectors. Additionally,
the important influence of atmospheric transport variability on the inter-annual changes
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of air pollution levels in the Arctic troposphere was also revealed recently, particularly
the effect of North Atlantic Oscillation (NAO) (Eckhardt et al., 2003). However, studies
emphasizing the simultaneous effects of varying atmospheric transport and BC emis-
sions are still limited. More recently, the inter-annual variation of BC was correlated
with two atmospheric transport indices derived from the 700 hPa geopotential heights
and regional BC emissions, but only 36 and 54% of the variations can be explained
for January and April data (Gong et al., 2010). In this paper, an attempt is made to
investigate the effect of changes in both emission and atmospheric transport on the
inter-annual variation of BC observed at Alert from 1990 through 2005, and to further
quantify the contributions of BC emissions from two sectors based on trajectory analy-
sis technique. To better isolate the effect of atmospheric transport in the cold seasons,
10-day backward trajectories in January and April between 1990 and 2005 are used
in this study. Transport in January and April are specifically investigated in this study
because the atmospheric transport to the Arctic remain strong in these months accord-
ing to the average length of the 10-day back trajectories arriving at Alert. Applying the
cluster analysis technique, the transport pathways affecting Alert are identified for both
seasons. Based on the obtained transport frequency from cluster analysis and the
estimated BC emission intensity from surrounding regions, a linear regression model
is constructed to reconstruct the year-to-year changes in BC surface concentrations in
winter and spring.

2 Data and methods
2.1 Equivalent black carbon data

Continuous hourly measurements of the BC at Alert have been conducted since 1989.
The attenuation of light transmitted through particles collected on a quartz fiber filter
was measured using a commercial aethalometer, along with the attenuation of a blank
filter. Then the hourly BC concentrations were calculated based on the difference in
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attenuation, the filter area, the sample flow rate, and a specific attenuation coefficient
(19m2/g). The later is determined based upon calibrations during instrument devel-
opment and theoretical calculations. More detailed description of the method and the
determination of the specific attenuation coefficient were documented by Sharma et
al. (2004).

2.2 Trajectory data and transport frequency

Ten-day backward trajectories arriving at 500 m above ground level (or a.g.l.) at Alert
were initialized 12 times daily (i.e., 00:00, 02:00, 04:00, ... and 22:00 coordinated
universal time) for January and April between 1990 and 2005 using the HYSPLIT
model (HYbrid Single-Particle Lagrangian Integrated Trajectory, version 4) (Lin et al.,
2001). Three-dimensional wind fields from NCEP/NCAR global reanalysis data (Kalnay
et al.,, 1996) were used to drive HYSPLIT, which are available every 6h on a 2.5
degree latitude-longitude global grid with 18 vertical levels. The arrival elevation of
500ma.g.l. locates within the wintertime Arctic inversion layer so that it is represen-
tative of the air sampled at Alert. Worthy et al. (1994), for instance, compared tra-
jectories arriving 1000, 925, 850, and 700 hPa above Alert and suggested that the
925 hPa level (about 540ma.g.l.) was the most representative arriving height. Ten-
day backward trajectories are used in this study since trajectories of a shorter dura-
tion are usually not long enough to indicate possible distant source regions affecting
the Arctic (Harris and Kahl, 1990). Although longer trajectories are generally sub-
ject to higher uncertainty, progressive advances in generating meteorological fields,
computing trajectories, and especially, the implementation of cluster analysis tech-
nique on a large set of trajectories in this study may, to some extent, reduce the ef-
fects of individual errors (Harris and Kahl, 1994; Kahl, 1990). The clustering algo-
rithm described by Dorling et al. (1992) was modified (refer to Supporting Information:
Modified Dorling’s algorithm, http://www.atmos-chem-phys-discuss.net/10/2221/2010/
acpd-10-2221-2010-supplement.pdf) to effectively group trajectories. Each group of
trajectories represents a distinct transport pathway bringing air masses into Alert. The
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transport frequency (dimensionless) for every pathway can be estimated by computing
the percentage of trajectories in that group.

2.3 Surface flux of BC

Wintertime black carbon emissions in the northern mid-latitudes are predominantly
emitted from incomplete fossil fuel combustion. Analyzing BC trend in the Arctic re-
quired building annual BC emission inventories by country from 1990 through 2005.
BC emissions were calculated globally from consumption and transaction amounts of
23 different fuel types compiled by the United Nations (United Nations, 2007). The
method to compute emissions was initially developed by (Cooke et al., 1999) for 1970—
1989. The period was extended a first time to 1990-1998 in (Sharma et al., 2004)
and through 2005 in (Sharma et al., 2009). BC emissions located in the former USSR
decreased by more than 50% during the first half of the 1990s, and since then have
progressively increased. In addition, South Asian emissions steadily increased during
the 1990s and have accelerated since the early 2000s, reaching +10% per year. Global
emissions were also developed by (Bond et al., 2007). Only emissions every 10 years
until 2000 are made available to the public on their web site (http://www.hiwater.org).
For the year 2000, we determined global emissions of 7200 Gg, while they totalized
4537 Gg, i.e. 37% less. For 1990, the difference calculated is similar.

Based on the previous study on the atmospheric transport into the Arctic troposphere
(Stohl, 2006), North America (50—180° W), European Union (15° W—15° E) and the for-
mer USSR (15-180° E) are considered as the major BC source regions affecting Alert
through the lower troposphere transport in this work. The obtained BC surface fluxes
from these regions for 1990-2005 are shown in Fig. 1. A pronounced decreasing trend
in BC surface flux is found for the former USSR sector while the emissions from the
European Union and the North American sectors increase stably during the same pe-
riod.
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2.4 Simple linear regression model

A mass balance approach is used to establish the linkage among the intensity of an-
thropogenic emission, the frequency of atmospheric transport, and the measured BC,
which has the following formula

n
[BC]Jan/Apr,j = z (f/,/ 'C/'J') M
i=1
where / =1, 2,..., n is an arbitrary index for atmospheric transport pathways affecting
Alert and j=1990, 1991,..., 2005 represents year from 1990 through 2005. For the
year of j, the left-hand side of the above equation represents the monthly average
BC concentration observed in January or April (in ng/mS), f; ; (in percentage) is the

transport frequency of the /-th pathway, and C; ; (in ng/m3) is defined as the BC con-
centration that would be measured if only the /-th transport pathway had affected the
receptor.

It is then assumed in this study that the characteristic BC concentration of a transport
pathway is linearly proportional to the surface flux of BC emission at source region
identified by trajectory cluster analysis. The mass balance model takes the following
form,

[BClyan,apr) = z (fi j-bi-E; ) 2)

i=1

where E; ; (in ng/mz/s) represents the surface flux of BC emission from source region
i in the year of j and b; (in s/m) is a cluster specific proportional constant. The final
form of the mass balance model shows a linear dependence of monthly average BC
concentration ([BC]) on transport frequency (f) and emission intensity (E), which are
obtained following the methodologies described in Sect. 2.1-2.3. It is a simple linear

n
regression model with the independent variable or predictor > (f; ;-E; ;) and the slope
=1

i=
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b;. It is physically meaningful to have a zero intercept in this model, which requires
that other BC emissions than those considered in this study have little impact on the
near-surface BC observed at Alert. Using a particle dispersion model, the BC source
contribution to the entire Arctic troposphere from south Asia was estimated to be only
10% of the European value (Stohl, 2006). The number would be even smaller for the
case of high Arctic surface, such as the underlying receptor, Alert. Given BC con-
centrations, transport frequencies, and emission intensities, the slope (b;) is estimated
using the least squares method. The purpose of introducing the b factors is to relate
the available surface emission inventories to the observed concentrations at the recep-
tor when atmospheric transport from source regions takes place. The b factors are
assumed to be the ratio of the concentration in the air to the surface emission flux. So
it is region specific and it has the unit of s/m. It may depend on factors, such as the
horizontal wind speed, precipitation, and air mass mixing during the transport.

3 Results and discussion
3.1 Transport pathways affecting Alert

Ten-day backward trajectories for January and April from 1990 through 2005 are clas-
sified into 7 distinct groups by implementing the modified clustering algorithm. The
cluster-mean trajectories, which indicate the average atmospheric flow patterns, are
shown in Fig. 2. The identified 7 transport pathways are distinct in wind direction and
speed. First of all, there are several specific characteristics that can be found for the
air masses arriving at Alert in January. In terms of wind direction, it was found that
southerly (clusters 1, 2, and 3) and northerly (clusters 4, 5, 6, and 7) flows dominate
the wintertime atmospheric transport. For the period of interest, northerly winds consti-
tute slightly over 50% of the total flows and the rest is from southerly transport. Among
southerly transport routes, clusters 2 and 3 indicate transport of air masses from south
and southwest to the receptor Alert. Cluster 2 appears to be the most frequent trans-
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port pathway, which alone accounts for 20% of the air masses affecting Alert. The
cluster-member plot for cluster 2 (not shown in this paper) indicates that most of the
trajectories in this group originally started from Canada or Alaska, moved first towards
southeast of Canada, and turned north between Baffin Island and Greenland due to
the effect of geographic barrier. Cluster 3 (about 11%) is composed of trajectories with
a strong westerly wind component. The trajectories in this cluster are mostly found to
originate between Eastern Siberia and the Beaufort Sea, although few are found from
Bering Sea. Cluster 1 (17%), however, contains trajectories passing through the Euro-
pean Arctic region. Trajectories in this cluster initiated from the North Atlantic Ocean
and the Europe.

Among the northerly transport pathways in Fig. 2a, cluster 5 is characterized as a
relatively slow northerly moving group, which is found about 14% of the time in Jan-
uary. Trajectories grouped into this cluster initiated from the northern high latitudes of
the former USSR, but they are found cycling around the Alert site. During the 10-day
transport to Alert, trajectories in this group spent considerable amount of time in trav-
eling above the sea ice covering the Arctic Ocean. In January, several fully developed
long-range transport pathways bringing air masses from Eurasia into Alert are found
with considerable frequency of occurrence. This type of pathways includes clusters 4,
6, and 7 in Fig. 2a. Cluster 7 (about 10%) represents the transport of mid-latitude con-
tinental air masses from Eastern Europe. A number of trajectories in this cluster extend
deeply into the mid-latitudes as far south as 45° N. Many of them traveled eastwards
for the first one or two days before entering the Arctic region. In cluster 6, trajectories
started within a wide area of Siberia and extended also deeply into the continent (about
50° N in latitude). Such long-range transport is frequently found in winter for close to
18% of the time. Transport from Eastern Siberia with rare exceptions from Bering Sea
and Alaska is presented by cluster 4 (10%) in Fig. 2a.

Compared to the atmospheric transport patterns in January, the cyclonic feature is
much weaker and the length of trajectories is shorter in April, due to shifted and weak-
ened surface pressure systems: the Siberian High, the Icelandic Low, and the Aleutian
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Low (Serreze and Barry, 2005). Thus, long-range transport from the mid-latitudes is
less frequent in spring compared to winter. The monthly average trajectory length in
April is about 38% shorter than January between 1990 and 2005. In Fig. 2b, clusters
1 and 2 represent transport originated from the central and the northwestern North
America, respectively. Cluster 3 is composed of trajectories from Eastern Siberia, and
clusters 4 and 5 point to the Central Northern Siberia. Transport of air mass from
Europe in April is only found in cluster 7.

According to the direction of each identified transport pathway, the linkage between
the source of emission and the receptor is established. Tables 1 and 2 present the year-
to-year changes in atmospheric transport frequency between 1990 and 2005 for winter
and spring, respectively. In the North American sector, the frequency of atmospheric
transport increases by about 10% from winter to spring. In the former USSR sector,
transport from the Western and the Central USSR increases by 6% in spring compared
to the winter pattern. Compared to that in winter, the frequency of transport from
Europe in spring also decreases significantly by 15%.

3.2 Inter-annual variations of BC at Alert explained by the model

The transport frequency obtained in the previous section is then used here as f val-
ues in Eq. (2). Given monthly average BC measurements ([BC]), transport frequency
(), and surface BC flux (E), the linear regression model (Eq. 2) is solved using the
least squares method, and the region specific b factors, as well as the individual p-
values, are given in Table 3 for both seasons. The regressions are significant at 95%
confidence level for both seasons. The time-series and the correlation between model
reconstructed and the observed monthly average BC are shown in Fig. 3. Strong pos-
itive correlations are found between the model reconstructed and the observed BC at
Alert for both seasons. The square of Pearson’s correlation coefficient (Rz) indicates
the inter-annual variations in observations explained by our linear regression model.
As shown in Fig. 3, our model is able to explain 77% of the variation in the observed
BC for winter, and over 80% is explained for spring, which is considerably better than
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the approach in (Gong et al., 2010). Given the same BC emission dataset used in both
studies, the better correlations obtained in this study are probably due to the imple-
mentation of 3-D trajectories followed by cluster analysis to better represent transport
pathways affecting Alert rather than the pressure difference on a specific pressure level.
It may also be partially due to the introduction of the pathway specific b factors, which
implicitly account for the effect of atmospheric BC removal. Inter-annual variations can
be considerably explained by this model which implies that atmospheric transport plays
the dominant role in connecting source regions and the Canadian high Arctic site dur-
ing the Arctic haze season. In such extreme cold season, favorable meteorological
conditions, such as stable stratification, surface temperature inversion, and extreme
dryness, suppress mixing, dry deposition, and wet scavenging of BC in the air and,
therefore, enhance the long-range atmospheric transport.

About 20% of the inter-annual variation in observations cannot be explained by this
approach. The uncertainty of this approach is affected by several assumptions made
in the current study. First, the atmospheric removal mechanisms are not explicitly
included in our approach. By assuming constant b factors with respect to the iden-
tified transport pathways, constant removal efficiencies during transport are implicitly
assumed between 1990 and 2005. This assumption may not perfectly hold for years
with extreme precipitation events. In January, 1997, for instance, the area averaged
precipitation accumulation at the European sector is found the lowest among the pe-
riod of interest, and it is estimated 33% lower than the multi-year average based on
the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) dataset
(Huffman et al., 1997). Thus, the significant underestimation (about 25 ng/m3 lower
than the observation) in January, 1997 may be partly due to the extreme dry con-
ditions, which substantially suppressed the wet scavenging of aerosols. In January
1995, however, the highest precipitation accumulation at the European sector (33%
higher than the multi-year average) was found, which may partly explain the overesti-
mation by our model. Another major source of uncertainty is the assumption that BC
particles are uniformly distributed at the regions of emission. The BC emission inten-
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sities used in this study does not consider the geographic distribution of BC within the
potential source regions. Uncertainties of this approach may also come from trajectory
calculation, emission data, and the implicit treatment of particle dry deposition and air
mass mixing during the transport. To reduce all these sources of uncertainties, a study
implementing the state-of-the-art aerosol model is on-going.

3.3 Source contributions to BC at Alert

According to the model, the contributions of BC transport from the North American and
the Eurasia sectors are estimated based on the average of January and April from 1990
through 2005, as shown in Fig. 4. The annual BC emission intensities of North America
and Eurasia are also shown for comparison. Comparing the importance of these two
regions in affecting Alert, contributions from Eurasia dominate throughout the 16-year
period. The model suggests that the Eurasia emitted BC contributes about 90 ng/m3
(or 85%) to the measured BC particles at Alert, while the North America contributes
less than 15ng/m3 (or 15%) on 16-year average. It agrees well with the most recent
multi-model estimation (North America: 10% and Eurasia: 90%) (Shindell et al., 2008),
considering the effects of South and East Asian emissions are not considered in this
study. In January, the effect of the Eurasian emission becomes even more predominant
(94%) than that in April (70%), which is due to the enhanced long-range transport in
January. The results also agree with the case study conducted by Worth et al. (1994),
for example, which attributed the observed peaks in BC concentration at Alert to long-
range transport events from the Eurasian sector.

The model also suggests that the contribution of Eurasia declined significantly in
the first 8-10 years since 1990. However, a slightly increasing trend can be noticed
since the late 1990s to 2005 on the Eurasian contribution curve in Fig. 4. The relative
importance of atmospheric transport and BC emission in governing the inter-annual
variations of regional contributions to the near-surface BC level at Alert is also investi-
gated. The Pearson’s correlation coefficient between the Eurasian contribution and BC
emission intensity from that region is found to be 0.93, which indicates that the inter-
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annual change in Eurasian contributions is mainly attributed to regional BC emission
reduction during the 16-year period rather than the changes in atmospheric transport.
On the other hand, the correlation for the North American side is very poor (R = 0.23).
So on the North American side, source contribution to BC levels at Alert for the same
period did not simply depend on regional BC emission, but also on other factors, espe-
cially atmospheric transport patterns.

4 Conclusions

Based on the atmospheric transport frequency and the estimated BC emission inten-
sity from surrounding regions, a linear regression model is constructed to investigate
the inter-annual variations of BC observed at Alert in January and April, representative
of winter and spring respectively, from 1990 through 2005. The atmospheric transport
frequency is obtained by conducting cluster analysis on 10-day backward trajectories
arriving at Alert. Annual BC emission intensity from potential source regions (i.e. Eu-
ropean Union, former USSR, and North America) used in this study is an extended
database initially developed by (Cooke et al., 1999). Solving the linear model, strong
correlations are found between BC concentrations predicted with the regression model
and measured at Alert for both seasons. The linear model is able to explain 77% of the
inter-annual variation of BC for winter, and over 80% is explained for spring. Results
imply that atmospheric transport and BC emission are the major contributors to the
inter-annual variations in BC concentrations observed at Alert in the cold seasons for
the 16-year period.

Based on the regression model the relative contributions of regional BC emissions
affecting Alert are attributed to Eurasia and North America. Considering both seasons,
the model suggests that Eurasia is the major contributor to the near-surface BC levels
at the Canadian high Arctic site with an average contribution of over 85% during the
16-year period. In winter, the atmospheric transport of BC aerosols from Eurasia is
found to be even more predominant with a multi-year average of 94%. The model esti-
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mates smaller contribution from the Eurasian sector in spring (70%) than that in winter.
Results suggest that atmospheric transport and BC emission played different roles in
governing the inter-annual variations of regional contributions to the near-surface BC
level at Alert. It is found that the change in Eurasian contributions depends mainly
on the reduction of emission intensity. On the other hand, the inter-annual variation
of the North American contributions was due to the changes in both emission and at-
mospheric transport. In agreement with (Gong et al., 2010), BC emission control in
Eurasia seems to be an effective way to reduce BC levels in the Arctic lower tropo-
sphere.
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Table 1. Inter-annual variation of transport frequency (trajectory number of each sector divided
by the total number of trajectories, in percentage) affecting Alert in January, 1990—2005.

| North America | Former USSR |  European Union

| Cluster2 | Cluster3 Cluster4 Cluster5 Cluster6 | Cluster 1 Cluster 7
1990 25% 3% 0% 0% 17% 33% 21%
1991 55% 0% 7% 10% 17% 9% 2%
1992 30% 4% 10% 32% 6% 11% 8%
1993 14% 42% 3% 0% 27% 14% 0%
1994 5% 2% 19% 19% 33% 11% 12%
1995 12% 4% 6% 37% 25% 13% 3%
1996 31% 26% 11% 4% 9% 18% 0%
1997 11% 6% 9% 10% 21% 1% 43%
1998 19% 5% 18% 7% 11% 31% 10%
1999 1% 15% 2% 8% 0% 70% 4%
2000 43% 29% 6% 10% 7% 6% 0%
2001 26% 13% 0% 14% 20% 15% 11%
2002 2% 3% 16% 14% 39% 10% 15%
2003 15% 21% 18% 19% 7% 15% 3%
2004 23% 5% 28% 4% 34% 2% 2%
2005 18% 6% 1% 21% 9% 19% 27%

Average | 21% \ 52% \ 27%
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Table 2. Same as Table 1, but for April, 1990-2005.
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\ North America | Former USSR | European Union
| Cluster 1 Cluster 2 | Cluster 3 Cluster4 Cluster5 Cluster 6 | Cluster 7
1990 15% 11% 38% 13% 2% 0% 22%
1991 1% 16% 26% 16% 0% 41% 1%
1992 38% 0% 13% 2% 20% 17% 11%
1993 2% 4% 24% 40% 12% 8% 9%
1994 33% 8% 21% 4% 19% 5% 11%
1995 19% 7% 16% 16% 27% 0% 15%
1996 19% 0% 6% 0% 0% 0% 74%
1997 22% 4% 8% 4% 11% 38% 14%
1998 8% 17% 6% 0% 9% 43% 17%
1999 11% 12% 21% 8% 40% 8% 0%
2000 39% 11% 29% 14% 5% 2% 0%
2001 37% 4% 18% 38% 1% 1% 0%
2002 0% 69% 14% 10% 0% 7% 0%
2003 3% 5% 52% 15% 7% 17% 1%
2004 25% 11% 7% 15% 22% 8% 13%
2005 36% 1% 26% 12% 19% 6% 0%
Average | 30% | 58% \ 12%
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Table 3. Values of b; factors for January and April, 1990-2005.
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b, b, by b, by by by
January 11.0 684 1003 1927 167.1 1814 437
p-value 0.048 0.081 0.088 0.082 0.017 0.006 0.006
April 65.8 548 137.6 1138 1290 62.6 9.2
p-value 0.037 0.045 0.002 0.046 0.045 0.046 0.048
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Fig. 1. Annual average BC surface flux (ng/m2/s) from European Union, the former USSR, and

North America: 1990-2005.
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Fig. 2. Transport pathways affecting Alert, Nunavut in January (a) and April (b) from 1990
through 2005 identified by cluster analysis on the HYSPLIT trajectories. The number outside
the brackets serves only as an identification of each cluster; the one inside the brackets gives

T 4 (13%)

@

55 (12%)

7 (11%)

ACPD
10, 2221-2244, 2010

Atmospheric
transport of black
carbon to Arctic

L. Huang et al.

@,

40


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/10/2221/2010/acpd-10-2221-2010-print.pdf
http://www.atmos-chem-phys-discuss.net/10/2221/2010/acpd-10-2221-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/

BC (ng/ms)

BC (ng/ms)

300 T T T T T
(a) January § R’=0.77
250 - = . oo
2 pwe *°
200+ & . ]
Observed
150 E

100 \\'/\*-\ \/ i N

—m— Observed
Reconstructed
50 T T T T T T
1989 1992 1995 1998 2001 2004 2007
300 T T T T T
(b) April 8 | R*=0.81
250 = o
‘é L]
200+ 3 o i
). 4
1504 o \ Observed
100 \ /\ N /' i
LAV
50 \ g
—m— Observed
i

1989 1992 1995 1998 2001 2004 2007

2243

Fig. 3. Time-series of the model reconstructed and the observed monthly average BC in Jan-
uary (a) and April (b), 1990-2005. The R? shown in both plots are the squires of the Pearson’s
correlation coefficients between the reconstructed and observed BC concentrations rather than
those for linear regressions.
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sectors based on the average of January and April from 1990 through 2005. The inter-annual

changes in BC emission intensity are show by two dashed lines.
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